Topology is the branch of mathematics originally used to classify the shapes of three-dimensional objects such as soccer balls, [...] These original ideas of topology were greatly generalized and made abstract by mathematicians, but the central idea, that things are only “topologically equivalent” if they can smoothly be transformed into each other, remains as its key idea.— D. Haldane 2016
$$\int_S \Omega (\mathbf{x}) \mathrm{d}^2 \mathbf{x} = 4 \pi (1 - g)$$
Berry connection:$$ \bm{A}_m (\bm{k}) = i \langle \bm{u}_{m,\bm{k}} (\bm{k}) | \nabla_{\bm{k}} | \bm{u}_{m,\bm{k}} \rangle $$
Berry curvature:$$ \bm{\Omega}_m (\bm{k}) = \bm{\nabla} \times \bm{A}_m(\bm{k}) $$
Chern number:$$C_m = \frac{1}{2 \pi i} \int_{\mathbb{T}^2} \bm{\Omega}_m (\bm{k}) \mathrm{d}^2 \bm{k} \in \mathbb{Z} $$
If $U$ and $V$ are almost unitary: $UU^{\dagger} \approx VV^{\dagger} \approx I$, then we can use another definition: \[ C_B = \frac{1}{2 \pi} \textrm{Im} (\textrm{tr} (\log (VUV^{\dagger} U^{\dagger}))) \]
Note that the Bott index is defined for a given energy
$$\begin{align*} H_{\mathrm{eff}} &=\sum_{n=1}^{N} \sum\limits_{m=-1}^1 \left(\textcolor{red}{\hbar\omega_{A,B}}+\textcolor{lime}{m g_e \mu_{B} |\bm{B}|} - \textcolor{cyan}{i\frac{\hbar\Gamma_{0}}{2}}\right) \left|e_{nm}\right\rangle\left\langle e_{nm}\right| \\ \nonumber &+\frac{3 \pi \hbar \Gamma_{0}}{k_{0}} \sum_{n \neq n'}^{N} \sum\limits_{m,m'=-1}^{1} \left( {\hat d}_{eg} \textcolor{yellow}{{\mathcal{G}} \left(\bm{r}_{n}, \bm{r}_{n'}\right)} {\hat d}_{eg}^{\dagger} \right)_{m m'} \left| e_{nm}\right\rangle\left\langle e_{n'm'} \right| \end{align*}$$
$$\mathcal{G}(\bm{r},\bm{r}') = -\frac{e^{ik \Delta r}}{r} \left( P (ik \Delta r) \mathbf{1}_3 + \frac{\Delta\bm{r} \otimes \Delta\bm{r}}{\Delta r^2} Q (ik \Delta r) \right) +\frac{\delta(\Delta\bm{r})}{3k_0^2}\mathbf{1}_3$$ | $$\begin{align*} P (x) &=& 1 - \frac{1}{x} + \frac{1}{x^2} \\ Q (x) &=& - 1 + \frac{3}{x} - \frac{3}{x^2}\end{align*}$$ |
---|
$$W_{\alpha}^A(\bm{k}) = \left|\bm{\psi}_{\alpha}^{A+}(\bm{k}) \right|^2 + \left|\bm{\psi}_{\alpha}^{A-}(\bm{k}) \right|^2$$
$$W_{\alpha}^A(\bm{k})+W_{\alpha}^B(\bm{k})=1$$