Interrogation écrite 2

INF 201 — IMA4— 23/02/2023 — 15 minutes

Exercice 1. (/1) Faire une ligne de beaux « & »
Exercice 2. (/14) Le but de cet exercice est de proposer une gestion basique des matrices de dimensions 2×2 des vecteurs de dimensions 2×1 .
Question 1. (/1) Proposer un type produit vect2 pour représenter un vecteur de $\mathcal{M}_{1\times 2}(\mathbb{R})$.
Question 2. (/1) Proposer un type produit mat 22 pour représenter une matrice de $\mathcal{M}_{2\times 2}(\mathbb{R})$.
Question 3. (/2) Proposer un type somme mat2x pour représenter un vect2 ou un mat22.
Question 4. (/2) Proposer une fonction add_vect2 qui additionne deux vect2:
Question 5. (/4) Proposer une fonction add_mat2x qui additionne deux mat2x et qui échoue avec failwit "erreur" si l'addition n'est pas possible.
On rapelle que le produit matriciel est défini par: $ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} ax + bz & ay + bt \\ cx + dz & cy + dt \end{pmatrix} $
Et le produit entre une matrice et un vecteur: $ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix} $
Question 6. (/4) Proposer une fonction mat22_x_mat2x qui multiplie une matrice mat22 avec un mat2x:

Exercice 3. (/7) D'après un exercice de TP. On considère les ensembles hexa $4 = \{0,, 16^4 - 1\}$, carhex $= \{'0',, '9'\} \cup \{'A',, 'F'\}$, base $16 = \{0,, 15\}$.
Question 7. (/1.5) Définir les types hexa4, carhex et base16 avec les restrictions qui s'imposent.
Dans cet exercice on se restreint à des entiers qui peuvent être codés sur 4 caractères hexadécimaux.
Question 8. ($/0.5$) Définir le type rep_hexa4 représentant les quadruplets de caractères hexadécimaux carhex à l'aide d'un type produit.
Question 9. (/2) Réaliser la fonction base16Vhex qui convertit un entier e de type base16 en un carhex. On pourra utiliser les fonctions char_of_int, int_of_char et chiffreVbase10.
Question 10. (/3) Réaliser la fonction ecriture_hex qui convertit un entier e de type hexa4 en un rep_hexa4. On pourra utiliser la fonction div définit en TP ainsi que la fonction base16Vhex définie précedemment.